

calphad@postech.ac.kr

- Elastic Constants B, C11, C12, C44, ...
- Defect Energy

Surface Energy

Heat of Vacancy Formation, ...

Structural Energy

Energy and Lattice Parameters in Different Structures

Thermal Property

Specific Heat

Thermal Expansion Coefficient

Melting Temperature, ...

Semi-Empirical Atomic Potentials – History of Development

- EAM Potentials (1983, M.S. Daw and M.I. Baskes) Successful mainly for FCC elements
 - many other many-body potentials show similar performance
- 1NN MEAM Potentials (1987,1992, M.I. Baskes) Show Possibility for description of various structures
 - important to be able to describe multi-component system
- 2NN MEAM Potentials (2000, B.-J. Lee & M.I. Baskes) Applicable to fcc, bcc, hcp, diamond structures and their alloys

Second Nearest Neighbor Modified EAM (2NN MEAM)

- Second Nearest-Neighbor Modified Embedded-Atom Method Potential Byeong-Joo Lee and M.I. Baskes, Phys. Rev. B. 62, 8564-8567 (2000).
 Formalism of the 2NN MEAM
- Second Nearest-Neighbor Modified Embedded Atom Method Potentials for BCC Transition Metals
 B.-J. Lee, M.I. Baskes, H. Kim and Y. K. Cho, Phys. Rev. B. 64, 184102 (2001).
 Potential for Fe, Cr, Mo, W, V, Nb, Ta
- Semi-Empirical Atomic Potentials for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, Al and Pb based on first and second nearest-neighbor modified embedded atom method
 Byeong-Joo Lee, J.-H. Shim and M.I. Baskes, Phys. Rev. B. 68, 144112 (2003).
 Potential for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb
- Potential for other Elements: *Si*, *Ge*
- Potential for Alloy Systems: Fe-Cr, Ni-W, Fe-Cu, Cu-Ni, Fe-Ni, Ni-Si, Ge-Si

Semi-Empirical Atomic Potentials – EAM/MEAM : General

$$E = \sum_{i} \left[F_i(\overline{\rho}_i) + \frac{1}{2} \sum_{j(\neq i)} \phi_{ij}(r_{ij}) \right]$$

- **E** : Total Potential Energy
- **F** : Embedding Energy
- ρ : Electron Density (Considering Bonding Directionality)
- : Pair Interaction Energy

Semi-Empirical Atomic Potentials – EAM : Electron Density

$$E = \sum_{i} \left[F_i(\overline{\rho}_i) + \frac{1}{2} \sum_{j(\neq i)} \phi_{ij}(r_{ij}) \right]$$

$$\rho_i^{a(h)}(R) = C e^{-\beta^{(h)}(R/r_e - 1)}$$

$$\bar{\rho}_i = \rho_i^{(0)} (= \sum_i \rho_j^{a(0)}(r_{ij}))$$

Semi-Empirical Atomic Potentials – MEAM : Electron Density

$$\overline{\rho_{i}} = \rho_{i}^{(0)} \left(= \sum_{i} \rho_{j}^{a(0)}(\gamma_{ij}) \right) + \text{Angular contribution}$$

$$(\rho_{i}^{(0)})^{2} = \left[\sum_{j \neq i} \rho_{j}^{a(0)}(R_{ij}) \right]^{2}$$

$$(\rho_{i}^{(1)})^{2} = \sum_{\alpha} \left[\sum_{j \neq i} \frac{R_{ij}^{\alpha}}{R_{ij}} \rho_{j}^{a(1)}(R_{ij}) \right]^{2}$$

$$(\rho_{i}^{(2)})^{2} = \sum_{\alpha,\beta} \left[\sum_{j \neq i} \frac{R_{ij}^{\alpha} R_{ij}^{\beta}}{R_{ij}^{2}} \rho_{j}^{a(2)}(R_{ij}) \right]^{2} - \frac{1}{3} \left[\sum_{j \neq i} \rho_{j}^{a(2)}(R_{ij}) \right]^{2}$$

$$(\rho_{i}^{(3)})^{2} = \sum_{\alpha,\beta,\gamma} \left[\sum_{j \neq i} \frac{R_{ij}^{\alpha} R_{ij}^{\beta} R_{ij}^{\gamma}}{R_{ij}^{3}} \rho_{j}^{a(3)}(R_{ij}) \right]^{2} - \frac{3}{5} \sum_{\alpha} \left[\sum_{j \neq i} \frac{R_{ij}^{\alpha}}{R_{ij}} \rho_{j}^{a(3)}(R_{ij}) \right]^{2}$$

Semi-Empirical Atomic Potentials – MEAM : Electron Density

$$\overline{\rho}_i = \rho_i^{(0)} \left(= \sum_i \rho_j^{a(0)}(\gamma_{ij}) \right) +$$
Angular contribution

$$(\overline{\rho}_i)^2 = \sum_{h=0}^3 t_i^{(h)} (\rho_i^{(h)})^2 = (\rho_i^{(0)})^2 \left(1 + \sum_{h=1}^3 t_i^{(h)} (\frac{\rho_i^{(h)}}{\rho_i^{(0)}})^2\right) \quad \text{with } t_i^{(0)} = 1$$

$$G(\Gamma) = \frac{2}{1 + e^{-\Gamma}}$$

Semi-Empirical Atomic Potentials – MEAM : Embedding Function

$$E = \sum_{i} \left[F_{i}(\overline{\rho}_{i}) + \frac{1}{2} \sum_{j(\neq i)} \phi_{ij}(r_{ij}) \right]$$

$$F(\overline{\rho}) = AE_{c} \frac{\overline{\rho}}{\overline{\rho}^{o}} \ln \frac{\overline{\rho}}{\overline{\rho}^{o}}$$

$$\stackrel{\circ single bond}{\stackrel{\circ single single bond}{\stackrel{\circ single single single bond}{\stackrel{\circ single singl$$

M.I. Baskes et al., Phys. Rev. B, 40, 6085 (1989)

Semi-Empirical Atomic Potentials – MEAM : Universal EOS

$$E = \sum_{i} \left[F_{i}(\overline{\rho_{i}}) + \frac{1}{2} \sum_{j(\neq i)} \phi_{ij}(r_{ij}) \right]$$

$$E^{u}(r) = -E_{c}(1 + a^{*})e^{-a^{*}}$$

$$a^{*} = \alpha(r/r_{e} - 1)$$

$$\alpha = \left(\frac{9B\Omega}{E_{c}}\right)^{1/2}$$

$$C^{u}(r) = -E_{c}(1 + a^{*})e^{-a^{*}}$$

$$C^{u}(r) = -E_{c}(1 + a^{*})e^{-a$$

J.H. Rose et al., Phys. Rev. B, 29, 2963 (1984)

Semi-Empirical Atomic Potentials – MEAM : Universal EOS

$$E = \sum_{i} \left[F_i(\overline{\rho}_i) + \frac{1}{2} \sum_{j(\neq i)} \phi_{ij}(r_{ij}) \right]$$

$$F(\overline{\rho}^{o}(r)) + \frac{1}{2} \sum \phi(r) = E^{u}(r) = -E_{c}(1+a^{*})e^{-a^{*}}$$

$$\phi(r) = \frac{2}{Z_1} [E^u(r) - F(\bar{\rho}^o(r))]$$

1NN MEAM vs. 2NN MEAM – Many-Body Screening

$$C = \frac{2(X_{ik} + X_{kj}) - (X_{ik} - X_{kj})^2 - 1}{1 - (X_{ik} - X_{kj})^2}$$

$$X_{ik} = (R_{ik}/R_{ij})^2 \text{ and } X_{kj} = (R_{kj}/R_{ij})^2$$

$$S_{ikj} = f_c \left[\frac{C - C_{\min}}{C_{\max} - C_{\min}} \right]$$

$$f_c(x) = 1 \qquad x \ge 1$$

$$\begin{bmatrix} 1 - (1 - x)^4 \end{bmatrix}^2 \qquad 0 < x < 1$$

$$0 \qquad x \le 0$$

Semi-Empirical Atomic Potentials – 2NNMEAM

$$E = \sum_{i} \left[F_i(\overline{\rho}_i) + \frac{1}{2} \sum_{j(\neq i)} \phi_{ij}(r_{ij}) \right]$$

$$E^{u}(R) = F(\overline{\rho}^{o}(R)) + \frac{Z_{1}}{2}\phi(R) + \frac{Z_{2}S}{2}\phi(aR)$$

$$\overline{\rho}^{o}(R) = Z_{1}\rho^{a(0)}(R) + Z_{2}S\rho^{a(0)}(aR)$$

$$E^{u}(R) = F(\overline{\rho}^{o}(R)) + \frac{Z_{1}}{2} \psi(R)$$

$$\psi(R) = \phi(R) + \frac{Z_{2}S}{Z_{1}} \phi(aR)$$

$$\phi(R) = \psi(R) + \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{Z_{2}S}{Z_{1}}\right)^{n} \psi(a^{n}R)$$

Semi-Empirical Atomic Potentials – 2NNMEAM for Alloy Systems

$$E = \sum_{i} \left[F_i(\overline{\rho}_i) + \frac{1}{2} \sum_{j(\neq i)} \phi_{ij}(r_{ij}) \right]$$

Select a Reference Phase: FCC_A1, BCC_B2, L12, M(Va,C)₃,

Potential Energy per Atom, for BCC_B2 (CsCl type)

$$E_{ij}^{u}(R) = \frac{1}{2} \{ F_{i}(\overline{\rho}_{i}(R)) + F_{j}(\overline{\rho}_{j}(R)) \}$$

+ $\frac{1}{2} \{ Z_{1}\phi_{ij}(R) + \frac{Z_{2}}{2} [S_{ii}\phi_{ii}(aR) + S_{jj}\phi_{jj}(aR)] \}$

$$E_{ij}^{u}(R) = -E_{c}^{ij} (1+a^{*})e^{-a^{*}}$$

$$a^{*} = \alpha \left(\frac{R}{r_{e}^{ij}}-1\right), \quad \alpha = \left(\frac{9B_{ij}\Omega_{ij}}{E_{c}^{ij}}\right)^{1/2}$$

• $E_c, R_e, B, A, d, \beta^{(0)}, \beta^{(1)}, \beta^{(2)}, \beta^{(3)}, t^{(1)}, t^{(2)}, t^{(3)}, C_{max}, C_{min}$

Cohesive Energy of Stable and Metastable Structure Nearest Neighbor Distance Bulk Modulus, Elastic Constants (C11, C12, C44) Stacking Fault Energy Vacancy Formation Energy Surface Energy

MEAM for BCC Transition Metals - Fitted Properties

Elen	n. C11 C12	C44	E ₍₁₀₀₎	$E_{(110)} E_{(111)}$	E_{v}^{f}	E _{bcc/fcc}	E _{fcc/hcp}
Fe	2.430 1.380	1.219	2510	2356 2668	1.75	0.069	-0.023
	2.431 1.381	1.219		2360*	<i>1.79</i>	0.082	-0.023
Cr	3.909 0.897	1.034	2300	2198 2501	1.91	0.070	-0.02
	3.910 0.896	1.032		2200*	1.80	0.075	-0.029
Mo	4.649 1.655	1.088	3130	2885 3373	3.09	0.167	-0.038
	4.647 1.615	1.089		2900*	3.10	0.158	-0.038
\mathbf{W}	5.326 2.050	1.631	3900	3427 4341	3.95	0.263	-0.047
	5.326 2.050	1.631		<i>2990</i> *	3.95	0.200	-0.047
\mathbf{V}	2.323 1.194	0.460	2778	2636 2931	2.09	0.084	-0.011
	2.324 1.194	0.460		2600*	2.10	0.078	-0.036
Nb	2.527 1.331	0.319	2715	2490 2923	2.75	0.176	-0.012
	2.527 1.332	0.310		2300*	2.75	0.140	-0.036
Ta	2.664 1.581	0.875	3035	2778 3247	2.95	0.148	-0.023
	2.663 1.582	0.874		2780*	2.95	0.166	-0.041

Elem.	E	f '	Q		se	lf-interstitial
	MEAM	exp.	MEAM	exp.	E_{I}	structure
Fe	1.75	1.79	2.28	2.5	4.23	[110] dumbbell
Cr	1.91	1.80	2.61	3.1	3.90	[110] dumbbell
Mo	3.09	3.10	4.22	4.5	5.97	[110] dumbbell
W	3.95	3.95	5.56	5.5	8.98	[110] dumbbell
V	2.09	2.10	2.47	3.2	2.49	[110] dumbbell
Nb	2.75	2.75	3.32	3.6	2.56	[110] dumbbell
Ta	2.95	2.95	3.71	4.3	4.88	[110] dumbbell

Ele.	(0-1 MEAN	100°C) 1 exp.	C _P (0-1 MEAM	00°C) 1 exp.	T MEAN	m I exp.	H MEAN	H _m M exp.	V _m / MEAN	V _{solid} I exp.
Fe	12.4	12.1	26.1	25.5	2200	1811	13.2	13.8	3.4	3.5
Cr	9.0	6.5	26.8	24.0	2050	2180	18.8	21.0	4.4	-
Mo	5.3	5.1	25.9	24.1	3100	2896	20.1	37.5	3.0	-
W	4.2	4.5	25.4	25.4	4600	3695	33.0	52.3	3.2	-
\mathbf{V}	8.7	8.3	26.1	25.4	1800	2183	11.7	21.5	1.3	-
Nb	6.4	7.2	26.1	24.9	1900	2750	13.5	30.0	1.0	-
Ta	5.8	6.5	25.7	25.7	3200	3290	22.3	36.6	2.1	-

Semi-Empirical Potentials for Fe

Property	Fe-I	Fe-II	Fe-III	FS	MEAM	Experiment/FP
C11	2.12	2.33	2.42	2.43	2.43	2.43
C12	1.53	1.37	1.47	1.45	1.38	1.38
C44	1.15	1.18	1.12	1.16	1.22	1.22
C'	0.29	0.48	0.48	0.49	0.53	0.53
Hf_vac	2.14	1.41	1.63	1.83	1.75	1.5-2.0
Hm_vac	0.10	1.45	0.66	0.91	0.53	0.55
Hf_SIA	2.59	6.77	3.54	4.76	4.23	-
	<111>cr	<111>cr	<111>cr	<110>0	lu <110>du	<110>du
∆E_fcc/bcc	0.056	0.032	0.027	0.054	0.069	0.08/0.035,0.08
∆E_hcp/fcc	0.000	0.000	0.000	0.000	-0.023	-0.023/0.085,0.03
MP	1400	3850	2200	2200	2200	1811

C ₁₁	C ₁₂	C ₄₄	E ₍₁₀₀₎	E ₍₁₁₀₎	<i>E</i> ₍₁₁₁₎	$E_v^{\ f}$	E _{dia/fcc}	$E_{ m dia/hcp}$	E _{dia/bcc}	2
(1012	² dyne/o	cm ²)	(erg/cm ²))	(eV)		(eV)	(0-	-100°C)
1.67	0.65	0.80	2631	1766	1442	3.67	0.57	0.55	0.52	2.65
1.68	0.65	0.80		1135*		3.3-4.3	0.57	0.55	0.53	2.69

MEAM for Fe-Cr Binary System - Simulation of Phase Separation

200K

850K

1000K

MEAM for Ni-Si Binary System

Dilute Heat of Solution (eV/atom)

Si in (Ni) -1.50 (-1.37) Ni in (Si) +0.50

Ni ₃ Si	NiSi ₂
0.36 (0.36)	$0.28^{-}(0.28)$
3.504 (3.504)	5.391 (5.406)
2.64	1.93 (1.60)
3.67 (3.63-3.75)	2.39
2.13 (2.00-2.05)	1.69
1.54	0.70 (0.58)
1.96 (1.67-1.72)	0.32
5.3 (7.2)	8.0

MEAM for Co-Pt Binary System - S.I. Park et al., Scripta Mater., 2001.

Phase Diagram of the Ni-W Binary System

A. Fernandez Guillermet, 1986

MEAM for Tungsten

Property	MEAM	Experiment/FP
В	3.14	3.14
(∂В/ ∂Р)₀к	4.79	4.50
C11	5.326	5.326
C12	2.050	2.050
C44	1.631	1.631
ΔE_fcc/bcc	0.26	0.20
∆E_hcp/fcc	-0.047	-0.047
H_vac	3.95	3.95
QD	5.56	5.5
E(100)/(110)/(111)	3900/3427/4341	2990, 3468
% relaxation	-3.2/-3.0/-13.2	-3.1/ -5.9/ -15.1
MP	4600	3695
$\Delta H / \Delta V_f$	33.0/3.2	52.3/ -
Ср/ε (0-100°С)	25.4/4.2	25.4/4.5

MEAM for Nickel

Property	MEAM	Experiment/FP
В	1.876	1.876
(∂В/ ∂Р)0к	4.90	4.89
C11	2.612	2.612
C12	1.508	1.508
C44	1.317	1.317
ΔE_fcc/bcc	0.16	0.11
H_vac	1.51	1.60
QD	2.98	2.87
E(100)/(110)/(111)	1943/2057/1606	2240
% relaxation	-1.8/-6.0/-1.4	-3.2~1.1/ -8 ±1/-1 ±1
E_SF(111)	125	125
MP	2013	1728
$\Delta H / \Delta V_f$	24.6/9.1	17.5/4.5
Cp/ε (0-100°C)	25.4/12.6	26.5/13.3

Assessment of the MEAM parameters for the Ni-W Binary System

Calphad Assessment Results

 First Principles Calculation on stabilities, lattice constants and bulk moduli of stable/non-stable compounds

MEAM parameters for the Ni-W Binary System

	Selected value	Procedure for the determination
E _c ^{Ni3W}	$E_{\rm c}^{\rm Ni} + E_{\rm c}^{\rm W} + 0.08$	Fitting
r _e ^{Ni3W}	2.557	Fitting
B ^{Ni3W}	3.189	Fitting
d	0.75 <i>d</i> ^{ℕi} + 0.25 <i>d</i> ^ℕ	Assumption
C _{min} (Ni-W-Ni)	0.81 (0.81)	Fitting
C _{min} (W-Ni-W)	0.52 (0.49)	Fitting
C _{min} (Ni-Ni-W)	2.25	Fitting
C _{min} (Ni-W-W)	2.25	Fitting
ρ_0	$\rho_0^{\rm Ni} = \rho_0^{\rm W} = 1$	Assumption

MEAM for Ni-W Binary System

	a (Å)	c (Å)	Ec (eV)	B (Gpa)
Ni ₄ W (D1a)	5.73	3.553	5.36	292
7	5.73	3.553	5.40	293
$Ni_{3}W(L1_{2})$	3.62	-	5.58	319
	3.58	-	5.65	287
Ni ₃ W (D0 ₁₀)	2.56	4.05	5.59	316
5 17	2.53	-	5.42	289
$NiW_{3}(L1_{2})$	3.86	-	7.29	316
5 ~ 2'	3.84	-	7.55	283
NiW_{2} (D0 ₁₀)	2.76	4.44	7.36	321
3 19	2.76	-	7.70	304

MEAM for Ni-W Binary System

MEAM for Ni-W Binary System

Surface Transition and Alloying Effect – N.M. Hwang et al., 2000.

Pure W

W + 0.4wt% Ni

Vaccum Annealing

Simulated Surfaces of pure W and W-Ni alloy Powders - 6nm

Application to Nano Powder

Surface Facet, Au

Sintering, Ni

Surface Segregation, Cu-Ni

Size Effect on the Melting Point - J.-H. Shim et al., Surface Science, 2002.

Surface Facet, Au

Size dependence of Melting point

Surface Segregation and Phase Separation in Cu-Ni Nano Powder - III

Bulk, 100K

Thin Film, 100K

Thin Film, 298K

Surface Segregation and Phase Separation

Precipitation of Co in a Cu-Co Nano Powder - J.-H. Shim et al., JMR, 2002.

Energetics of Dot Formation during Thin Film Growths : Ge on Si

Coverage (Dot-size)

Double-Layer (5nm) Triple-Layer (5nm) Triple-Layer (10nm)

Double-Layer (10nm) Double-Layer (10nm) Double-Layer (12nm)

$$E_{II}$$
- E_I

 $\mathbf{E}_{\mathbf{III}}$ - $\mathbf{E}_{\mathbf{I}}$

0.010 eV/atom 0.017 eV/atom 0.007 eV/atom 0.025 eV/atom 0.031 eV/atom 0.016 eV/atom

0.004 eV/atom : (100) side 0.002 eV/atom : (110) side 0.003 eV/atom : (100) side

- C, H, O, N
- Si, Ge, Ga, In, As, N
- Oxide Systems
- First Principles Calculation

