Interpolation methods

20120778 Subin Lee

Department of Materials Science & Engineering Pohang University of Science & Technology

Assignment

- Polynomials (Lagrange method) 와 Cubic spline을 비교
- y=ln x 그래프 상에 4 개의 포인트가 주어졌을 때 x=2 값을 예측하라.

Interpolation methods

Lagrange polynomials

$$f_n(x) = \sum_{k=0}^n L_{n,k}(x) f(x_k)$$

$$L_{n,k}(x) = \prod_{\substack{j=0\\j \neq k}}^{n} \frac{x - x_{j}}{x_{k} - x_{j}}$$

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}$$

Spline methods

- 4. 내부 절점에서 2차 도함수도 같아야 한다. [n-1]
- 5. 양 끝점에서의 2차 도함수는 0이라고 가정한다. [2](2차 도함수가 0이 아니라면 그 정보로 조건을 대체)

Key codes: cubic spline

Key codes: Lagrange polynomials

```
//***lagrange 智令
double lagrange (double ary1[], double ary2[], int n, double x){
    double sum=0.0;
    for (int i=0; i<n; i++){
        for (int j=0; j<n; j++){
            if (i !=j){
                ary2[i]=((x-ary1[j])/(ary1[i]-ary1[j]))*ary2[i];
                }
            sum=sum+ary2[i];
        }
        return sum;
}</pre>
```

$$f_n(x) = \sum_{k=0}^n L_{n,k}(x) f(x_k)$$

$$L_i(x) = \prod_{j=1, j \neq i}^{n+1} \frac{x - x_j}{x_i - x_j}$$

$$= \frac{(x - x_1)(x - x_2) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{n+1})}{(x_i - x_1)(x_i - x_2) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_{n+1})}$$

Results and discussion

Example) x = 1, 4, 6 에서의 값에 기반을 둔 2 차 보간법을 사용하여 In2 값을 구하라. In 1 = 0 In 4 = 1.386294 In 6 = 1.791759			
$f_2(x) = 0 + 0.4620981(x - 1) + -0.0518731(x - 1)(x - 4)$ = 0.5658444			
Number of data points	Number of data points		
J Insert x values	4 Insert x values		
1 4 6			
Insert x:	Insert x:		
2	2		
The result by Lagrange: 0.565844346900983 (18.37% error) The result by cubic spline: 0.531262271391754 (23.36% error)	The result by Lagrange: 0.613416553818629 (11.50% error) The result by cubic spline: 0.531575722728613 (23.31% error)		
Number of data points	Number of data points		
5	10		
Insert x values	Insert x values		
1 4 6 7 9	1 4 6.2 7.1 8.3 9 10 11.2 12.0 13		
Insert X:	Insert X:		
2 The result by Learence, 0.626452046062152 (0.10% error)	2 The result by Learnings, 0 677002024220512 (2 200, error)		
The result by cubic spline: 0.532051488568178 (23.24% error)	The result by cubic spline: 0.530616383804913 (23.45% error)		

> As increase initial data points, error decreases for only Lagrange methods

Results and discussion

Number of data points	Number of data points	
4	4	
Insert x values	Insert x values	
1 4 6 7	1.4 3 6 7	
Insert x:	Insert x:	
2	2	
The result by Lagrange: 0.613416553818629 (11.50% error)	The result by Lagrange: 0.668882755785609 (3.50% error)	
The result by cubic coline: 0.53157572728613 (23.31% error)	The result by cubic spline: 0.644380004220410 (7.03% error)	
Number of data points	Number of data points	
4	4	
Insert x values	Insert x values	
1.4 3.5 6 7	1.4 2.6 6 7	
Insert x:	Insert x:	
2	2	
	The result by Lagrange: 0 676838258314518 (2 35% error)	
INE RECIT DV LAGRADGE, N PEINT/NN/P23/NP 1/1 P/1% ELLOYD		
The result by Lagrange: 0.00101/00/053/00 (4.04% error)	The result by cubic coliner $0.662044612009952 (4.40% correct)$	

As the initial data points near the unknown point become close, errors effectively decrease in both case

Number of data points		Number of data points	
10 Insert x values	y = x oxp(x)	5 Incert x values	$y = r \log(r)$
1 3 4 6 8 7 2 5.2	y = x exp(x)	1 5 4 6 8	$y = x \log(x)$
4.3		Insert x:	
7.9		3	
Insert x:		The result by Lagrange: 3.307274211609648 (0.35% error)	
3.7		The result by cubic spline: 3.433409657268317 (4.17% error)	
The result by Lagrange: 149	.724378964754521 (0.05% error)	· · · · · · · · · · · · · · · · · · ·	
The result by cubic spline:	148.625797777921377 (0.69% error)		

For most cases Lagrange method showed better accuracy

Results and discussion

For cubic spline methods the differences between data points are key factors.