AMSE205 Thermodynamics I

1. 길이 200 cm 인 끈으로 형성되는 사각형 중 최대 넓이를 지니는 사각형에 대한 해를 Lagrangian Undetermined Multiplier Method를 이용하여 구하라.
2. Derive the expression for the entropy change when n_{A} mole of ideal gas A and n_{B} mole of ideal gas B is mixed.
3. Solve the following problem once again. Here consider the two different contributions to the total entropy change: thermal entropy and configurational entropy.

A rigid container is divided into two compartments of equal volume by a partition. One compartment contains 1 mole of ideal gas A at 1 atm , and the other compartment contains 1 mole of ideal gas B at 1 atm .
(a) Calculate the entropy increase in the container if the partition between the two compartments is removed.
(b) If the first compartment had contained 2 moles of ideal gas A , what would have been the entropy increase due to gas mixing when the partition was removed?
(c) Calculate the corresponding entropy changes in each of the above two situations if both compartments had contained ideal gas A.
4. Consider a model in which the available energy levels are linearly spaced along the energy axis

$$
\varepsilon_{n}=\left(n+\frac{1}{2}\right) \varepsilon_{0}, \quad(n=0,1,2, \ldots, 9)
$$

The system contains ten particles. Consider two macrostates:

$$
\begin{aligned}
& \text { State I } \quad\{0,0,1,2,4,2,1,0,0,0\} \\
& \text { State II } \\
& \{0,1,1,2,2,2,1,1,0,0\}
\end{aligned}
$$

(a) Which macrostate has the higher energy?
(b) Which macrostate has the higher entropy?
(c) Which macrostate is more likely to be observed?

