Department of Materials Science and Engineering Pohang University of Science and Technology

AMSE502 Phase Transformations

due Date: Dec. 14, 2012		Prof. Byeong-Joo Lee
	Problem Set #7	calphad@postech.ac.kr
		Room 1- 311

- 1. The system A-B exhibits regular solution behavior in the solid state. Answer parts (a) through (e), each when η , the linear strain per unit composition difference, is equal to (i) 0 and (ii) 0.06.
 - a) Calculate the critical temperature for solid miscibility.
 - b) What is the temperature of the spinodal for the solutions of composition $X_{\rm B}$ = 0.75 and $X_{\rm B}$ = 0.60?
 - c) What is the critical wavelength at T = 775 K for the two solutions of part (b)?
 - d) What is the fastest growing wavelength at T = 775 K anywhere in the A-B system?
 - e) What is the maximum value of the amplification factor, $R(\beta)$, at 775 K anywhere in the A-B system?

Data

regular solution interaction parameter,	$\Omega = 15 \text{ KJ/mol}$
gradient energy coefficient,	$K = 10^{-9} \text{ J/m}$
Young's modulus,	$E = 10^{11} \text{ Pa}$
Poisson's ratio	v = 0.3
self-diffusion coefficient,	$D_{\rm A}^* = D_{\rm B}^* = 10^{-3} \exp(-100 \text{ kJ/RT}) \text{ m}^2/\text{sec}$
atomic masses,	$M_{\rm A} = 195 \text{ g/mol}; M_{\rm B} = 197 \text{ g/mol}$
densities,	$\rho_{\rm A} = 21.5 \text{ g/cm}^3; \rho_{\rm B} = 19.7 \text{ g/cm}^3$

2. The rate of development of compositional fluctuations by spinodal decomposition into zones can be written as

$$C_A(x,t) = C_A(x,0) \exp(-\pi^2 Dt / \lambda^2)$$

where $C_A(x,t)$ represents the maximum concentration of species A. (20%)

- (a) What effect does increasing the transformation time by a factor of 10 from 10s to 100s at room temperature have on the maximum concentration of A when $\lambda = 0.01 \,\mu$ m and $D_A = 10^{-4} \exp(-85000 J/RT) \,\text{m}^2 \text{s}^{-1}$?
- (b) Compare the maximum concentrations after 100s at room temperature when the fluctuation wavelength changes by a factor of 10 from 0.1 μ m to 0.01 μ m.
- (c) Compare the maximum concentrations after 100s for fluctuations of wavelength 0.01 μ m in a sample processed at room temperature with those of a similar sample processed at 100K above room temperature.
- (d) In view of the above calculations, to which physical metallurgical factor is the transformation kinetics most sensitive?