AMSE318 HW1 WITH PYTHON

49004547 Seokjee SHIN

```
#HW1-1
2
#Add 0.00001 million times, showing the result every 100,000th step
n=0
step=0
while step<=1000000:
    n+=0.00001
    step += 1
    if step%100000 == 0:
        print(n)
```

0.9999999999980838
2.000000000004635
3.000000000011186
4.000000000017737
4.999999999979879
5.9999999999420215
6.999999999904164
7.999999999866306
8.999999999828448
9.99999999979059
$\mathrm{n}+=1$
step+=1
if step\%100000 == 0 :
print(n/100000)
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

CONCLUSION OF HW1-1

- Although, numerically both exercises should get 10 as an answer, the first exercise was not able to get the correct answer due to the calculation error. When the program calculates very small number, due to its limitation from transition to binary code (0 and 1), there's calculation error.
- Unlike the first exercise, the second exercise was able to get the correct answer as it divided the number by 100000 every $100000^{\text {th }}$ times. This way, the results can be much accurate with integer number result.

```
#HW1-2a
import numpy as np
from math import *
double_pi = pi
single_pi = np.float32(pi)
print(double_pi)
print('Number of digits of pi:',len(str(double_pi)))
print(single_pi)
print('Number of digits of pi:',len(str(single_pi)))
error = abs((double_pi-single_pi)/double_pi)*100
print('Error%:',error)
```

3.141592653589793
Number of digits of pi: 17
3.1415927
Number of digits of pi: 9
Error\%: 2.782753519183795e-06

```
#HW1-2
import numpy as np
#32-bit
n=1
count=0
for x in range(64):
    count+=1
    n = np.float32((n+2)/2)
    print(count,',', n)
    if n == 2:
        print('mantissa = ',count-1)
        break
#gap
print()
#64-bit
n=int(1)
count=0
for x in range(64):
    count+=1
    n = (n+2)/2
    print(count,',', n)
    if }\textrm{n}==2\mathrm{ 2:
        print('mantissa = ',count-1)
        break
```

$1,1.5$
$2,1.75$
$3,1.875$
$4,1.9375$
$5,1.96875$
$6,1.984375$
$7,1.9921875$
$8,1.9960938$
$9,1.9980469$
$10,1.9990234$
$11,1.9995117$
$12,1.9997559$
$13,1.9998779$
$14,1.999939$
$15,1.9999695$
$16,1.9999847$
$17,1.9999924$
$18,1.9999962$
$19,1.9999981$
$20,1.999999$
$21,1.9999995$
$22,1.9999998$
$23,1.9999999$
24,
mantissa $=23$
2
$1,1.5$
$2,1.75$
$3,1.875$
$3,1.875$
$4,1.9375$
$\begin{array}{ll}4,1.9375 \\ 5 & , 1.96875\end{array}$
$6,1.984375$
7 , 1.9921875
$\begin{aligned} & 7 \\ & 8 \\ & 8\end{aligned}, 1.9921875$
$8,1.99609375$
$9,1.998046875$
$9,1.998046875$
$10,1.9990234375$
10 , 1.9990234375
11 , 1.99951171875
12 , 1.999755859375
13 , 1.9998779296875
$14,1.99993896484375$
15 , 1.999969482421875
16 , 1.9999847412109375
$16,1.9999847412109375$
$17,1.9999923706054688$
18 , 1.9999961853027344
19 , 1.9999980926513672
20 , 1.9999990463256836
$21,1.9999995231628418$
21 , 1.9999995231628418
23 , 1.999999880790710
23 , 1.9999998807907104
24 , 1.9999999403953552
25 , 1.9999999701976776

25
26
27
, 1.9999999701976776

 27 , 1.9999999925494194
 28 , 1.9999999962747097
 29 , 1.9999999981373549
 30 , 1.9999999990686774
 31 , 1.9999999995343387
 32 , 1.9999999997671694
 33 , 1.9999999998835847
 34 , 1.9999999999417923
 34 , 1.999g9g9g99417923
 35 , 1.9999999999708962
 36 , 1.9999999999985448
 37 , 1.999999999992724
 38 , 1.9999999999996362
 39 , 1.999999999998181

CONCLUSION OF HW1-2

- In my computer, pi as an example, a single precision can produce 9digits accuracy whereas double precision can produce 17-digits accuracy.
- The number system of computer is:
- 32-bit: 23 mantissa
- 64-bit: 52 mantissa

