# Department of Materials Science and Engineering <br> Pohang University of Science and Technology 

## AMSE205 Thermodynamics I

due date: Oct. 12, 2021

1. The initial state of one mole of a monatomic ideal gas is $\mathrm{P}=10 \mathrm{~atm}$ and $\mathrm{T}=300 \mathrm{~K}$. Calculate the change in the entropy of the gas for (a) an isothermal decrease in the pressure to 5 atm , (b) a reversible adiabatic expansion to a pressure of 5 atm , (c) a constant-volume decrease in the pressure to 5 atm .
2. One mole of monatomic ideal gas is subjected to the following sequence of steps:
a. Starting at 300 K and 10 atm , the gas expands freely into a vacuum to triple its volume.
b. The gas is next heated reversibly to 400 K at constant volume.
c. The gas is reversibly expanded at constant temperature until its volume is again tripled.
d. The gas is finally reversibly cooled to 300 K at constant pressure.

Calculate the values of q and w and the changes in $\mathrm{U}, \mathrm{H}$ and S .
3.(a) Find the extreme value of the function,

$$
\mathrm{z}=(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2}+4
$$

Find the constrained maximum of this function corresponding to the condition

$$
x+y=1
$$

(b) by eliminating one variable and (c) by using a Lagrange undetermined multiplier method.
4. A rigid container is divided into two compartments of equal volume by a partition. One compartment contains 1 mole of ideal gas A at 1 atm, and the other compartment contains 1 mole of ideal gas B at 1 atm .
(a) Calculate the entropy increase in the container if the partition between the two compartments is removed.
(b) If the first compartment had contained 2 moles of ideal gas A , what would have been the entropy increase due to gas mixing when the partition was removed?
(c) Calculate the corresponding entropy changes in each of the above two situations if both compartments had contained ideal gas A.

1. The initial state of one mole of a monatomic ideal gas is $\mathrm{P}=10 \mathrm{~atm}$ and $\mathrm{T}=300 \mathrm{~K}$. Calculate the change in the entropy of the gas for (a) an isothermal decrease in the pressure to 5 atm , (b) a reversible adiabatic expansion to a pressure of 5 atm , (c) a constant-volume decrease in the pressure to 5 atm .

$$
P_{1} V_{1}=n R T_{1} \longrightarrow V_{1}=\frac{0.08206 \times 300}{10}=2.46 \mathrm{l}
$$

a) Isothermal, $P_{1} \rightarrow P_{2}=5 \mathrm{~atm}$

$$
\begin{aligned}
P_{2} V_{2}=n R T_{1} \longrightarrow V_{2}=\frac{0.08206 \times 300}{5} & =4.92 \mathrm{l} \quad\left(V_{2}=2 V_{1}\right) \\
\Delta S=\frac{q}{T}=\frac{R T \ln \left(\frac{V_{2}}{V_{1}}\right)}{X}=R \ln \left(\frac{V_{2}}{V_{1}}\right) & =(8.314) \times \ln 2 \\
& =5.76 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

b) reversible adiabetic expansion, $P_{1} \rightarrow P_{2}=5 \mathrm{~atm}$

$$
q=0 \quad 003 \quad \Delta S=0
$$

c) Constant volume , $P_{1} \longrightarrow P_{2}=5 \mathrm{~atm}$

$$
\begin{aligned}
& P_{2} V_{1}=n R T_{2} \longrightarrow T_{2}=\frac{2.46 \cdot 5}{0.08206}=150 \mathrm{~K} \quad\left(T_{2}=\frac{1}{2} T_{1}\right) \\
& \Delta S=\frac{q_{V}}{T}=\frac{\Delta U}{T}=\int C_{V} \frac{1}{T} d T=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right)=\frac{3}{2} R \times \ln \left(\frac{1}{2}\right) \\
&=\frac{3}{2} \cdot 8.314 \cdot \ln \left(\frac{1}{2}\right) \\
&=-8.64 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

$$
n=1
$$

2. One mole of monatomic ideal gas is subjected to the following sequence of steps:
a. Starting at 300 K and 10 atm , the gas expands freely into a vacuum to triple its volume.
b. The gas is next heated reversibly to 400 K at constant volume.
c. The gas is reversibly expanded at constant temperature until its volume is again tripled.
d. The gas is finally reversibly cooled to 300 K at constant pressure.

Calculate the values o (q)and(w) and the changes in (U) (HandS.)

$$
T_{1}=300 \mathrm{~K}, \quad P_{1}=10 \mathrm{~atm}, \quad V_{1}=\frac{0.08206 \times 300}{10}=2.46 \mathrm{l}
$$

a) $1 \rightarrow 2, \quad V_{2}=3 V_{1}=7.38 \mathrm{l}, \quad P_{2}=\frac{P_{1}}{3}=3.33 \mathrm{~atm}, T_{2}=300 \mathrm{k}$

Because the gas expands. Freely in a vacuum,

$$
w=0, q=0
$$

also $\Delta U=q-w=0$

$$
\Delta H=\Delta U-\Delta P V=0
$$

$$
\Delta S=R \ln \left(\frac{P_{2}}{P_{1}}\right)=(8.314) \cdot \ln 3=9.134 \mathrm{~J} / \mathrm{K}
$$

b) $2 \rightarrow 3, \quad T_{3}=400 \mathrm{~K}, \quad V_{3}=V_{2}=7.38 \mathrm{l}$

$$
\begin{aligned}
& P_{3}=\frac{R T_{3}}{V_{3}}=\frac{0.08206 \cdot 400}{7.38}=4.45 \mathrm{~atm} \\
& W=O \quad(\Delta V=0) \\
& \Delta U=q=\int C v d T=C_{v}\left(T_{3}-T_{2}\right)=\frac{3}{2} R(400-300) \\
& =\frac{3}{2} \cdot 8.314 \cdot 100 \\
& =1247 \mathrm{~J} \\
& \Delta H=\Delta U+P \Delta V=\Delta U=124 n \mathrm{~J} \\
& d S=\frac{d q}{T}=\frac{C_{v} d T}{T}=\frac{\frac{C_{v} d P X}{R}}{\frac{P_{X}}{R}}=C_{v} \frac{d P}{P} \\
& \sim \Delta S=\int_{P_{2}}^{P_{3}} \frac{C_{v}}{P} d P=C_{V} \ln \left(\frac{P_{3}}{P_{2}}\right)=\frac{3}{2} \cdot 8.314 \cdot \ln \left(\frac{4.45}{3.33}\right) \\
& =3.62 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

c. The gas is reversibly expanded at constant temperature until its volume is again tripled.
d. The gas is finally reversibly cooled to 300 K at constant pressure.
C) $3 \rightarrow 4$,

$$
\begin{aligned}
& T_{4}=T_{3}=400 \mathrm{~K}, \quad V_{4}=3 V_{3}=22.14 \mathrm{l} \\
& P_{4}=\frac{0.08206 \times 400}{22.14}=1.482 \mathrm{~atm}
\end{aligned}
$$

$\Delta V=0, \Delta H=0 \quad(\because$ Isothermal $)$

$$
\begin{aligned}
& W=-\int_{V_{3}}^{V_{4}} \frac{R T}{V} d V=R T \ln \left(\frac{V_{3}}{V_{4}}\right)=(8.314) \cdot 400 \cdot \ln \left(\frac{n .38}{22.14}\right) \\
&=-3653 \mathrm{~J} \\
& q=-W=3653 \mathrm{~J} \\
& d S=\frac{d q}{T} \Rightarrow \Delta S=R \ln \left(\frac{7.38}{22.14}\right)=(8.314) \ln \left(\frac{7.38}{22.14}\right) \\
&=-9.13 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

d) $4 \rightarrow 5, \quad T_{5}=300 \mathrm{~K}, \quad P_{5}=P_{4}=1.482 \mathrm{~atm}$

$$
\begin{aligned}
& V_{5}=\frac{0.08206 \times 300}{1.482}=16.6 \mathrm{l} \\
& \Delta H=q_{p}=\int C_{p} d T=\frac{5}{2} R \cdot\left(T_{5}-T_{4}\right)=\frac{5}{2} \cdot(8.314) \cdot(300-400) \\
& =-2078 \mathrm{~J} \\
& W=p \Delta V=1.482(16.6-22.4)=-821 \mathrm{~J} \\
& \Delta U=q_{p}-W=-2078+821=-125 n \mathrm{~J} \\
& d S=C_{p} \frac{d V}{V} \Rightarrow \Delta S=\int_{V_{4}}^{V_{5}} C_{p} \frac{d V}{V}=C_{p} \ln \left(\frac{V_{5}}{V_{4}}\right)=\frac{5}{2} R \ln \left(\frac{16.6}{22.14}\right) \\
& =-5.99 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

3.(a) Find the extreme value of the function,

$$
z=(x-2)^{2}+(y-2)^{2}+4
$$

Find the constrained maximum of this function corresponding to the condition

$$
x+y=1
$$

(b) by eliminating one variable and (c) by using a Lagrange undetermined multiplier method.
a)


Minimum value : $z=4$
b)

$$
\begin{aligned}
x+y & =1 \rightarrow y=-x+1 \quad \text { by } \\
\leadsto z & =(x-2)^{2}+(-x-1)^{2}+4 \\
& =\left(x^{2}-4 x+4\right)+\left(x^{2}+2 x+1\right)+4 \\
& =2 x^{2}-2 x+9
\end{aligned}
$$

$$
\begin{gathered}
\sim \frac{d z}{d x}=4 x-2 \\
\left(\begin{array}{l}
f(x, y)=(x-2)^{2}+(y-2)^{2}+4 \\
g(x, y)=0
\end{array}\right.
\end{gathered}
$$

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=2(x-2)=\lambda \\
\frac{\partial f}{\partial y}=2(y-2)=\lambda
\end{array}\right.
$$

$$
\begin{aligned}
& \Longrightarrow \lambda=2(x-2)=2(y-2) \\
& \longrightarrow x=y \xrightarrow{\longrightarrow} x+y=1 \\
& \longrightarrow x=\frac{1}{2}=y \\
& \therefore(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right) \\
& \longrightarrow z=\frac{17}{2}
\end{aligned}
$$

4. A rigid container is divided into two compartments of equal volume by a partition. One compartment contains 1 mole of ideal gas A at 1 atm , and the other compartment contains 1 mole of ideal gas B at 1 atm .
(a) Calculate the entropy increase in the container if the partition between the two compartments is removed.
(b) If the first compartment had contained 2 moles of ideal gas A , what would have been the entropy increase due to gas mixing when the partition was removed?
(c) Calculate the corresponding entropy changes in each of the above two situations if both compartments had contained ideal gas A.
a)

| $A$ |  |
| :---: | :---: |
| $n=1$ mel |  |
| $P=1 \mathrm{~atm}$ | $B$ <br> $P=1$ mol <br> $P=1 \mathrm{~atm}$ |$\Rightarrow$| $A$ | $B$ |
| :---: | :---: | :---: |
| $n=1$ mel | $B=1$ mol <br> $P=0.5 \mathrm{~atm}$ |

Isothermal. $T_{1}=T_{2}$

$$
\begin{aligned}
\Delta S_{A}=\frac{q}{T}=\frac{R X \ln \left(\frac{V_{A 2}}{V_{A 1}}\right)}{\pi} & =R \ln \left(\frac{P_{A 1}}{P_{A_{2}}}\right) \quad\left(\because P_{1} V_{1}=P_{2} V_{2}\right) \\
& =R \ln \left(\frac{1}{0.5}\right) \\
& =R \ln 2
\end{aligned}
$$

$$
\begin{aligned}
\Delta S_{B}=\frac{q}{T}=\frac{R T \ln \left(\frac{V_{B 2}}{V_{B 1}}\right)}{T} & =R \ln \left(\frac{P_{B 1}}{P_{B 2}}\right) \\
& =R \ln \left(\frac{1}{0.5}\right) \\
& =R \ln 2
\end{aligned}
$$

$$
\therefore \Delta S_{\text {system }}=\Delta S_{A}+\Delta S_{B}=2 R \ln 2=11.526 \mathrm{~J} / \mathrm{K}
$$

b)

| $A$ | $B$ |
| :---: | :---: |
| $n=2 \mathrm{~mol}$ |  |
| $p=2 \mathrm{~atm}$ |  | | $n=1 \mathrm{mal}$ |
| :---: |
| $p=1 \mathrm{~atm}$ |$\Rightarrow$| $A$ | $B$ |
| :---: | :---: | :---: |
| $n=2 \mathrm{~mol}$ | $n=1 \mathrm{mal}$ <br> $p=1 \mathrm{~atm}$ <br> $p=0.5 \mathrm{~atm}$ |

$$
\begin{aligned}
\Delta S_{A}=\frac{q}{T}=\frac{n_{A} R X \ln \left(\frac{P_{A 1}}{P_{A 2}}\right)}{T} & =2 R \ln \left(\frac{P_{A 1}}{P_{A 2}}\right) \\
& =2 R \ln 2 \\
\Delta S_{B}=\frac{q}{T}=\frac{n_{B} R X \ln \left(\frac{P_{B 1}}{P_{B 2}}\right)}{T} & =R \ln \left(\frac{P_{B 1}}{P_{B 2}}\right) \\
& =R \ln 2 \\
\therefore S_{S y}=\Delta S_{A}+\Delta S_{B}=3 R \ln 2 & =\ln .289 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

c) In a),

$V_{1}$| $A$ <br> $P=1$ <br> $P=1$ | $n=1$ <br> $P^{\prime}=1$ |
| :---: | :---: |

$$
\begin{aligned}
& \left(\begin{array}{ll}
P_{A_{1}}=\frac{R T}{V_{1}} & P_{A_{2}}=\frac{2 R T}{2 V_{1}}=\frac{R T}{V_{1}} \\
P_{A_{1}^{\prime}}=\frac{R T}{V_{1}} & P_{A^{\prime} 2}=\frac{2 R T}{2 V_{1}}=\frac{R T}{V_{1}}
\end{array}\right. \\
& \Delta S_{A}=\frac{q}{T}=n_{A} R \ln \left(\frac{P_{A 1}}{P_{A 2}}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \Delta S_{\text {sys }}=0
\end{aligned}
$$

In b).

| $A$ | $A^{\prime}$ |
| :---: | :---: |
| $n_{A}=2$ | $n_{A}=1$ |
| $V_{1}$ | $V_{1}$ |

$$
\begin{aligned}
&\left(\begin{array}{rl}
P_{A 1} & =\frac{2 R T}{V_{1}}, \quad P_{A 2}
\end{array}=\frac{3 R T}{2 V_{1}}\right. \\
& P_{A^{\prime} 1}=\frac{R T}{V_{1}}, \quad P_{A^{\prime} 2}=\frac{3 R T}{2 V_{1}} \\
& \Delta S_{A}=n_{A} R \ln \left(\frac{P_{A 1}}{P_{A^{2}}}\right)
\end{aligned}=2 R \ln \left(\frac{4}{3}\right) .
$$

