## 20210451 3324

★ 편의삿 계산 마짓의 Chale 생박

- 1. The initial state of one mole of a monatomic ideal gas is P = 10 atm and T = 300 K. Calculate the change in the entropy of the gas for (a) an isothermal decrease in the pressure to 5 atm, (b) a reversible adiabatic expansion to a pressure of 5 atm, (c) a constant-volume decrease in the pressure to 5 atm.
- (a) by ideal gas law, 10 4 = 0.082x300, 4 = 2.46L

$$\Delta S = \frac{g}{T}$$
,  $g = W : \Delta U = 0$  is isothermal

$$V_1 = 4.92L$$
 : Isothermal process,  $PV = Constant$ 

Plot  $P-V$  Graph,  $P_1$ 
 $V_2 = \frac{q}{T}$ 
 $V_3 = \frac{q}{T}$ 
 $V_4 = \frac{q}{$ 

$$A S = \frac{8}{T} = 8.314 \times l_{1} 2 = 5.16$$
, Ans/ 5.16 J/K

Since 
$$\Delta S = \frac{g}{T}$$
,  $\Delta S = 0$  Ans  $O$ 

(c). Plot  $P - V$  Graph, 10

 $\Delta U = g = hC_V \Delta T$  : Constant volume

by ideal gas law, Tr = 150K also Cu=15R: monutonic ideal gas

2. One mole of monatomic ideal gas is subjected to the following sequence of steps:

- a. Starting at 300 K and 10 atm, the gas expands freely into a vacuum to triple its volume.
- b. The gas is next heated reversibly to 400 K at constant volume.
- c. The gas is reversibly expanded at constant temperature until its volume is again tripled.
- d. The gas is finally reversibly cooled to 300 K at constant pressure.

Calculate the values of q and w and the changes in U, H and S.

$$V_2 = 7.38 L$$
,  $f_2 = 3.33 atm$  by process (a),  $f_3 = 4.44 atm$  by process (b)

$$V_3 = 22.1L$$
,  $P_3 = 1.49$  atm by process (c),  $V_4 = 16.6L$  by process (d)  
Process (a).  $g = w = 4V = 4H = 0$  : Free expusion,  $4S = 1R \ln \frac{V_1}{V_1} = 9.18 \text{ J/K}$ 

ideal gas : 
$$AU = g = 1.5 \times 8.314 \times 100 = 1247 \text{ J}$$
,  $AH = NCPAT = 2.5 \times 8.314 \times 100 = 2019 \text{ J}$ ,  $AS = \int_{300}^{400} \frac{hCv}{T} dT = 1.5 \times 8.314 \times \ln\frac{4}{3} = 3.59 \text{ J/K}$ 

Process (c). 
$$q = w = nRT \int_{V_L}^{V_2} \frac{1}{V} dV$$
 : /sothermal,  $g = w = 8.314x + 0.0x \ln 3 = 3654J$ ,  $\Delta V = 0$ ,  $\Delta V =$ 

Process (1). W= PAV = 1.49 x (-5.5) x 101.325 = -831 J, 
$$\Delta V = nC_V \Delta T = -1247 J$$
,  $q = \Delta H = nC_V \Delta T = -2019 J$ ,  $\Delta S = \int_{\mu\nu}^{300} \frac{nC_P}{T} dT = 2.5 \times 8.314 \times \ln \frac{3}{F} = -5.98 J/K$ 

3.(a) Find the extreme value of the function,

$$z = (x - 2)^2 + (y - 2)^2 + 4$$
.

Find the constrained maximum of this function corresponding to the condition

$$\mathbf{x} + \mathbf{y} =$$

(b) by eliminating one variable and (c) by using a Lagrange undetermined multiplier method.

: we get extreme value at (2,2)

(b). Plug y=1-x, then  $z=(x-2)^2+(-1-x)^2+\varphi=2x^2-2x+9$ We can get extreme value when  $\frac{d^2}{dx} = 0$ ,  $\therefore 4x - 2 = 0$ ,  $x = \frac{1}{2}$ then  $4=\frac{1}{2}$  . Condition fulfilled

Ans/ 8.5 (when 
$$x = \frac{1}{2}$$
,  $y = \frac{1}{2}$ )

$$\frac{\partial f}{\partial x} = \lambda x - x + \lambda = 0$$

$$\frac{\partial f}{\partial x} = \lambda x - x + \lambda = 0$$

$$2x + \lambda = x$$

$$x + y = 1$$

$$\left(\chi = \frac{1}{\lambda}, \, \mathcal{J} = \frac{1}{\lambda}, \, \lambda = 3\right)$$

Ans) 8.5 (when x= 1, y=1)

- 4. A rigid container is divided into two compartments of equal volume by a partition. One compartment contains 1 mole of ideal gas A at 1 atm, and the other compartment contains 1 mole of ideal gas B at 1 atm.
  - (a) Calculate the entropy increase in the container if the partition between the two compartments is removed.
  - (b) If the first compartment had contained 2 moles of ideal gas A, what would have been the entropy increase due to gas mixing when the partition was removed?
  - (c) Calculate the corresponding entropy changes in each of the above two situations if both compartments had contained ideal gas A.

Total PV is constant : partial pressure decreases by increased volume