1.

(α)

$$
\begin{aligned}
& \frac{\partial C}{\partial t}=D \cdot \frac{d^{2} C}{\partial x^{2}} \\
& (B \cdot C)\left[\begin{array}{l}
C(L<x<0, t-)=C_{0} \\
A C(x=0 \cdot t)=C_{S} \\
\frac{\alpha C(x-t, t)}{d x}=0
\end{array}\right]
\end{aligned}
$$

(b): Separation of variatle,

$$
\begin{aligned}
& \frac{\alpha((x+t)}{d t}=D \cdot \frac{d^{2} C}{d x^{2}} \\
& C(x \cdot t)=X(x) \cdot T(t) \cdot \\
& \frac{1}{D T} \frac{d T}{d t}=\frac{1}{X} \cdot \frac{d^{2} X}{d x^{2}}=-\lambda^{2} \\
& \left.\frac{d T}{d t}+x^{2} D\right) T=0 ; T(t)=e^{-\lambda^{2} D t} \\
& \frac{d^{2} X}{d t^{2}}+\lambda^{2} X=0 ; X(x)=A \cdot \cos \lambda x+B \cdot \sin \lambda x . \\
& C(x, t)=\sum_{n}\left(A \cos \lambda n x+B \cdot \sin \lambda_{n} x\right) \cdot e^{-\lambda^{2} D t}
\end{aligned}
$$

- inital condition.

$$
C(L \angle x<0, t=0)=C_{0}
$$

-boundarz condition
(1)

$$
\begin{aligned}
& \Rightarrow C(x=0 . t)=0 \rightarrow C(x=0 . t)=\sum_{\pi} A \cdot e^{-h^{2} D t}=0 . \Rightarrow A=0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{\alpha C(n=L, t)}{\alpha x}=0 \\
& \Rightarrow \frac{\alpha C(n=L, t)}{\partial N}=\frac{\sum}{n}\left(B \cdot \lambda_{n} \cdot \cos \lambda_{n} \cdot x\right) \cdot e^{-\lambda_{n}^{2} D \cdot t}=0 \\
& \quad \Rightarrow B \cdot \lambda_{n} \cdot \cos \lambda_{n} \cdot L=0 \Rightarrow \lambda_{n} L=\frac{(n-t) \pi}{2}=\lambda_{n}=\frac{(n+1) \pi}{2 \cdot L} \text { or } \lambda_{n}=\frac{n \pi}{2 L}(n=1.35 \cdots)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad\left(C_{K} \cdot t\right)=\sum_{n}\left(B_{n} \cdot \sin \frac{\left(\frac{2 n+1) \pi}{2 L} \cdot x\right) \cdot e^{-\left\{\frac{\left(2_{n}+1\right) \pi}{2 L}\right\}^{2} \cdot D \cdot t}}{}\right. \\
& C\left(x_{0}\right)=\sum_{n}^{\infty} B_{n} \sin \left(\frac{2 n+1) \pi}{2 L} \cdot x\right)=C_{0}-C_{S} . \\
& B_{n} \int_{0}^{L}\left\{\sin \frac{(2 n+1) \pi}{2 L} \cdot x\right\}^{2} d x=\int_{0}^{L}\left(C_{0}-C_{s}\right) \cdot \sin \frac{(2 n+1) \cdot \pi}{2 L} x d x=B_{n} \cdot \frac{L}{2} \\
& \therefore B_{n}=\frac{2}{L} \int_{0}^{L}\left(c_{0}-c_{5}\right) \sin \frac{(2 n t) \cdot \pi}{2 L} \cdot x \cdot d x \\
& =\frac{2}{L}\left(C_{0}-C_{5}\right) \cdot \int_{0}^{L} \sin \frac{(\ln (t)}{2 L} \pi x \cdot d x \\
& =\frac{2}{L}\left(C_{0}-C_{s}\right)\left[-\frac{2 L}{(2 n+1) \pi} \cdot \cos \frac{(2 n t) \pi}{2 c} \pi_{x x}^{L}\right]_{0}^{L} \\
& =\frac{4}{S_{n}+1 \pi}\left(C_{0}-C_{s}\right) . \\
& \therefore C_{\left(n_{x} t\right)}=\sum_{n}\left\{\frac{4}{(2 n t) \pi}\left(C_{0}-C_{S}\right) \cdot \sin \frac{(2 n t)}{2 l} \pi x\right\} e^{-\left\{\frac{(2 n+1) \pi}{x}\{2 \cdot D \cdot t\right.}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \bar{C}(t)=\frac{1}{L} \int_{0}^{L} C(x, t) d x . \\
& =\frac{1}{L}\left(c_{0}-c_{S}\right) \sum_{n=(2 n+1) \pi}^{\infty} \frac{t}{} e^{-\int\left(\frac{2 n+t) \pi)^{2}}{2 L} \cdot\right) \cdot t} \int_{0}^{L} \sin \frac{(2 n+1) \pi}{2 L} x d x \\
& =\frac{1}{L}\left(c_{0}-c_{s}\right) \cdot \sum_{n=1}^{\infty} \frac{4}{(2 n t) \pi} e^{-\left(\frac{2 n+1) \pi}{2 L}\right)^{2} \cdot D \cdot t}\left[-\frac{2 L}{(2 n+1) \pi} \cos \frac{(2 n t) \pi}{2 L} x\right]_{0}^{L} \\
& =\sqrt{\frac{B\left(\sigma_{0}-C_{s}\right)}{\pi^{2}} \sum_{n=0}^{a d} \frac{1}{(2 n+1)^{2}} e^{-\frac{(n n t)^{2} \pi^{2}}{4 t^{2}} \cdot D t}}
\end{aligned}
$$

C. Iot tem approximution ${ }^{1}$

$$
\begin{aligned}
& \Rightarrow \bar{C}\left(t=\frac{8\left(C_{0}-C_{s}\right)}{\pi^{2}} e^{-\frac{\pi^{2}}{4 L^{2}} D \cdot t .}\right. \\
& \Rightarrow \frac{C-C_{s}}{2}=\frac{8(6-\epsilon s)}{\pi^{2}} e^{-\frac{\pi^{2}}{4 L^{2}} D \cdot t} \Rightarrow \frac{\pi^{2}}{16}=e^{-\frac{\pi^{2}}{-4 t^{2}} D \cdot t} \Rightarrow \ln \frac{\pi^{2}}{16}=-\frac{\pi^{2}}{4 L^{2}} \cdot D \cdot t \\
& \Rightarrow t=\frac{-4 t^{2}}{\pi^{2} \cdot D} \cdot \ln \frac{\pi^{2}}{16}=\frac{-4 \cdot(\operatorname{lan})^{2}}{\pi^{2} \cdot 4 \times 10^{-1} \mathrm{~cm}^{2} \cdot \mathrm{~s}} \ln \frac{\pi^{2}}{16}=489511 \mathrm{~s}
\end{aligned}
$$

G
$\ln \left(1^{2}\right)$

$\begin{array}{cr}\sqrt{t} & \text { Injection D } \\ 0.526519 & 24.24 \\ 0.744797 & 33.33 \\ 0.912262 & 40.91 \\ 1.053434 & 46.97 \\ 1.177804 & 53.03\end{array}$

$$
\begin{aligned}
& 1 / \mathrm{T} \quad \ln \left(\wedge^{\wedge} 2\right)
\end{aligned}
$$

(c):

$$
D=\operatorname{Bepp}\left(\frac{C}{R-1}\right)=\frac{x^{2}}{t A^{2}}
$$

$$
\left[\begin{array}{llll}
T_{1}=1173 . k & D_{1}=1.195 \times 10^{-9} \mathrm{~cm}^{2} l \mathrm{~s} & x_{1}=24.24 \mu \mathrm{~m} & t=998 \mathrm{~s} \\
T_{2}=1213 \mathrm{k} & D_{2}=3.929 \times 10^{-9} \mathrm{~cm}^{2} / \mathrm{s} & x_{2}=42.42 \mu \mathrm{~m} & t=498 \mathrm{~s}
\end{array}\right]_{0}
$$

$$
\begin{aligned}
& D_{1}=\operatorname{Bexp}\left(-\frac{a}{B \cdot 1133 k}\right) \\
& D_{2}=B \exp \left(-\frac{\sigma}{B \cdot 12 n 3 k}\right)
\end{aligned} \quad \frac{D_{1}}{D_{2}}=\exp \left(\frac{Q}{B_{1} \cdot 12 n 3 K}-\frac{Q}{11 n_{3 k}-B}\right)=\frac{1.195 \times 10^{-7}}{3.929 \times 10^{-7}}
$$

$\Rightarrow \frac{Q}{B}\left(\frac{1}{1213}-\frac{1}{11133}\right)=\ln \frac{\left(.95 \times 10^{-9}\right.}{3.929 \times 10^{-9}}$

$$
\Rightarrow=\frac{B \cdot \ln \frac{1.145 \times 10^{-9}}{3.929 \times 60^{9}}}{\frac{1}{1 \mathrm{nn3}}-\frac{1}{1 \ln 3}}=14 \mathrm{mn} .64 \mathrm{~J}
$$

