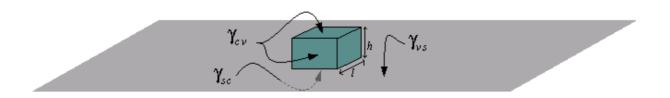
Department of Materials Science and Engineering Pohang University of Science and Technology

AMSE502 Phase Transformations

due Date: Apr. 15, 2021		Prof. Byeong-Joo Lee
	Problem Set #4	calphad@postech.ac.kr
		Room 1- 311

1. The rate of nucleation of solid tin from its liquid has been determined at various temperatures below the melting point by rapidly supercooling a large number (10^{10}) of small tin droplets, separated by an oxide film and measuring the change in volume of the sample as a function of time. Using "bulk" values of the free energy of transformation, ΔG_{ν} , the investigators were able to show that the theory of homogeneous nucleation agreed well with their work and that assumptions of a spherical nucleus and the applicability of the bulk value of the surface energy γ to nucleus formation were correct to within the accuracy of their experiments.


Calculate the values of the following quantities at 113 °C

- (a) The liquid-solid interfacial energy for tin;
- (b) The critical radius for the nucleation of solid tin;
- (c) The number of tin atoms in a nucleus of critical size.

Data

\cdot The slope of ln <i>I</i> versus 1/T at 113 °C	= -23.8 × 10 ³ k
$\cdot \Delta G_v$ at 113 °C	= -10 ⁸ Jm ⁻³
\cdot radius of tin atom, r	$= 1.5 \times 10^{-10} \mathrm{m}$
· Boltzman constant, k	$= 1.38 \times 10^{-23} \text{ J/K}$

2. The following figure illustrates a nucleation of a completely faceted cubic particle on a flat substrate. Find the critical size (h^*, l^*) and energy barrier of nucleation.

