

1. $\Delta G=-\frac{4}{3} \pi r^{3} \Delta G r+4 \pi r^{2} \gamma$

$$
\Delta G=-n v \Delta G_{v}+4 \pi\left(\frac{3 n v}{4 \pi}\right)^{\frac{2}{3}} \gamma=-n v \Delta G v+(4 \pi)^{\frac{1}{3}}\left(\underset{2}{2}=\left(\frac{3 n v}{4 \pi}\right)^{\frac{2}{3}} v^{\frac{2}{3}}\right) \gamma
$$

2. (a) $\Delta G=-n v \Delta G_{v}+(36 \pi)^{\frac{1}{3}} n^{\frac{2}{3}} v^{\frac{2}{3}} \gamma-n v \Delta G_{\nu}+(36 \pi)^{\frac{1}{3}} n^{\frac{2}{3}} v^{\frac{2}{3}} \gamma$
(b) $n^{*} \tau \quad \frac{\partial \Delta l a}{\partial n}=001 \mathrm{k} \cdot$ el n 敢

$$
\begin{aligned}
& \rightarrow \frac{\partial \Delta G}{\partial n}=-V \Delta G_{v}+\frac{2}{3}(36 \pi)^{\frac{1}{3}} v^{\frac{2}{3}}+n^{\frac{1}{3}}=0 \quad / \pi^{\frac{1}{3}}=\frac{\frac{2}{3}(36 \pi)^{\frac{1}{3}} v^{\frac{2}{3}}}{v \Delta G_{\nu}} \\
& \left.n^{*}=\frac{32 \pi}{3} \frac{1}{v(\Delta \Delta v}\right)^{3} / \Delta G^{*}=\frac{1}{-(\Delta G v)^{2}} \frac{32 \pi r^{3}}{3}+(3 G \pi)^{\frac{1}{3}} v^{\frac{2}{5}}+\left(\frac{32 \pi}{3 v}\right)^{\frac{2}{3}}\left(\frac{\sigma}{\Delta G_{v}}\right)^{2}
\end{aligned}
$$

정리하문 $\triangle G^{*}=\frac{16 \pi}{3} \frac{f^{3}}{\left(\Delta\left(\sigma_{v}\right)^{2}\right.}$
(c) stability same $\rightarrow \Delta G_{\text {dia }}=\Delta G_{\text {gr }}$

$$
\Rightarrow-n V_{\text {dia }} \Delta G_{V-\text { dia }}+(36 \pi)^{\frac{1}{3}} \Lambda^{\frac{2}{3}} V_{\text {dia }}^{\frac{2}{3}} \gamma_{\text {dia }}=-n V_{g r} \Delta G_{V-}-(36 \pi)^{\frac{1}{3}} n^{\frac{2}{3}} V_{g r}{ }^{\frac{2}{3}} \sigma_{g r}
$$

$$
\begin{aligned}
& \begin{aligned}
\cdot \gamma_{\text {ia }} & =3.6 \mathrm{~J} / \mathrm{m}^{2} \quad n=36 \pi\left(\frac{8^{\frac{2}{3}} \times 0.1934-6^{\frac{2}{3}} \times 0.2246}{0.02}\right)^{3}=464 \mathrm{H} \\
& =0.2246 \mathrm{ev} / \AA^{2}
\end{aligned} \\
& \text {. } \begin{aligned}
r_{\text {diu }} & =3.65 \mathrm{~J} / \mathrm{m}^{2} \\
& =0.2278 \mathrm{eV} / \AA^{2} n=36 \pi\left(\frac{8^{\frac{2}{3}} \times 0.1934-6^{\frac{2}{3}} \times 0.2278}{0.02}\right)^{3}=14574
\end{aligned} \\
& \begin{aligned}
\gamma_{\text {dia }} & =3,7 \mathrm{~J} / \mathrm{m}^{2} \quad n=36 \pi\left(\frac{8^{\frac{2}{3}} \times 0.1934-6^{\frac{2}{3}} \times 0.2309}{0.02}\right)^{3}=217 \pi \\
& =0,2309 \mathrm{eV} / A^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow n & <36 \pi\left(\frac{V_{G r^{3}}^{\frac{2}{3}} r_{g r}-V_{d i a}{ }^{\frac{2}{3}} \gamma_{\text {dia }}}{G_{i a}-6 r}\right)^{3} \\
(e) n^{*}=100 & =\frac{32 \pi}{3 V_{g r}}\left(\frac{\gamma_{g r}}{\Delta G_{v}}\right)^{3}=\frac{32 \pi}{3 \times 8 \times 10^{-30} \mathrm{~m}^{3} / \mathrm{atom}}\left(\frac{3.1 \mathrm{~J} / \mathrm{m}^{2}}{\Delta G^{8+}}\right)^{3} \Rightarrow \Delta G_{v}^{g r}=1.076 \times 10^{10} \mathrm{~J} / \mathrm{m}^{3}
\end{aligned}
$$

(f) $V_{\text {gr }} \Delta G_{r}^{g r}=G_{u p}-G_{r}$
$V_{\text {dan }} \Delta G_{v^{\text {da }}}={ }^{\circ} G_{\text {up }}-{ }^{\circ}$ Gdia

$$
)^{G \text { GVg }} \Delta G_{r}^{\text {din }}=\frac{V_{g r} \Delta G_{r}^{g r}+G_{g r}-G_{\text {dia }}}{V_{\text {dia }}}
$$

$$
\frac{8 \times 10^{-30} \mathrm{~m}^{3} \mathrm{kam} \times 1.076 \times 10^{10} \mathrm{~J} / \mathrm{m}^{3}-0.02 \times 10^{-1} \mathrm{x} 1.6 \mathrm{t}}{6 \times 10^{-30} \mathrm{~m}^{3} / \mathrm{atam}} \mathrm{~J} \mathrm{Atom}
$$

$$
\Delta G_{\text {dia }}{ }^{*}=\frac{16}{3} \pi \frac{\sigma_{\text {dia }}{ }^{3}}{\left(\Delta \sigma_{v^{2 a}}\right)^{2}} \Rightarrow(i) F_{\text {dia }}=3,6 \mathrm{~J} / \mathrm{m}^{2} \Rightarrow 4,1049 \times 10^{+8} \bullet \mathrm{~J}
$$

$$
\begin{aligned}
& \mathrm{m}^{3}(i i) \sigma_{\text {dia }}=3,65 \mathrm{~J} / \mathrm{m}^{2} \longrightarrow 4,2783 \times 10^{-18} \mathrm{~J} \\
& \text { (ioi) } \sigma_{\text {dia }}=3,7 \mathrm{~J} / \mathrm{m}^{2} \longrightarrow 4,4565 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

$T=300 \mathrm{k}$ 212 古呾 $k T=1,38 \times 10^{-23} \times 300=4,14 \times 10^{-21}$

$$
\frac{J_{\text {gr }}}{I_{\text {dia }}}=\exp \left(\frac{\Delta E_{\text {dia }}^{*}-4,3 \times 10^{-18} \mathrm{~J}}{4,14 \times 10^{21} \mathrm{~J}}\right)=
$$

$$
\begin{aligned}
& 300=4,14 \times 10 \\
& \text { (i) } 3,4167 \times 10^{-11}=3,4 \times 10^{-21} \\
& =\text { (ii) } 5,2920 \times 10^{-3}=5,3 \times 10^{-3} \\
& \text { (iii) } 2,6132 \times 10^{16}=2,6 \times 10^{16}
\end{aligned}
$$

e, fol Fiktori cuzpos $\Delta G_{v}^{\text {gr }}>\Delta G_{v}^{\text {dia olth. (drivigfone of graphite nucie }}$ tion

 aruL1 eonk zir driving fore of graphite mudeatione capilary

$$
\begin{aligned}
& \left.I_{\text {gra }}=\frac{\operatorname{Aexp}\left(\frac{-\Delta G^{*}}{k T} \mathrm{gu}\right)}{A \exp \left(\frac{\Delta E^{*} d x}{k T}\right)}=\exp \left(\frac{\Delta G^{*} d w^{*}-\Delta G^{*}}{k T}\right)^{*}\right)=1.38 \times 10^{10} \mathrm{~J} / \mathrm{m}^{3} \\
& \Delta G_{g r}^{*}=\frac{16}{3} \pi \times \frac{\gamma_{g r}^{3}}{\left.\Delta G_{v_{r}}\right)^{2}}=\frac{16}{3} \pi \times \frac{\left(3.1 \mathrm{~J}^{2} / \mathrm{m}^{2}\right)^{3}}{(1,07 \mathrm{fr})^{2}}=4,3113 \times 10^{-18}=4,3 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

